WISPP Governing Equations
If the equations do not display properly please use an updated version of your web browser.
If you are using google chrome, please install the MathJax Extension
The model simulates the two-dimensional plane strain Biot equations of soil displacement and pore pressure in the vertical (`z`) and horizontal (`x`)
directions, together with variability in time (`t`). The governing equations solved are as follows:
from equilibrium in the `x` direction,
`(lambda + 2G)(del^2w_x)/(del x^2) + G (del^2w_x)/(delz^2) + lambda (del^2 w_z)/(delxdelz) + G(del^2w_z)/(delzdelx) - (delu_w)/(delx) = 0 `
from equilibrium in the `z` direction,
`(lambda + 2G)(del^2w_z)/(del z^2) + G (del^2w_z)/(delx^2) + lambda (del^2 w_x)/(delzdelx) + G(del^2w_x)/(delxdelz) - (delu_w)/(delz) = 0 `
and from continuity principles incorporating Darcy's Law of fluid flow through a deformable porous medium
` del/(delx)[(k_(x x))/(gamma_w)(delu_w)/(delx) + (k_(xz))/(gamma_w)(delu_w)/(delz)] + del/(delz)[(k_(z x))/(gamma_w)(delu_w)/(delx) + (k_(zz))/(gamma_w)(delu_w)/(delz)] = C(delu_w)/(delt) + del/(delt)[(delw_x)/(delx) + (delw_z)/(delz)]`
The variation in time (`t`) and horizontal distance (`x`) is simulated in real and imaginary space:
`w_x(x, z, t,) = barw_x(z) exp[i(ax - omegat)]`
`w_z(x, z, t,) = barw_z(z) exp[i(ax - omegat)]`
`u_w(x, z, t,) = baru_w(z) exp[i(ax - omegat)]`
Resulting in the governing equation in real and imaginary conditions:
from equilibrium in the `x` direction,
`-a^2(lambda+2G)w_x + G(del^2w_x)/(delz^2) + ia(lambda + G) (delw_z)/(delz) - iau_w = 0`
From equilibrium in the `z` direction,
`(lambda +2G)(del^2w_z)/(delz^2) - a^2Gw_z + ia(lambda +2G)(delw_x)/(delz) - (delu_w)/(delz) = 0`
and from the continuity equation and Darcy's Law.
`-a^2(k_(x x))/(gamma_w)u_w + (k_(zz))/(gamma_w)(del^2u_w)/(delz^2) + ia(k_(xz))/(gamma_w)(delu_w)/(delz) + ia(k_(zx))/(gamma_w)(delu_w)/(delz) = - iomegaCu_w + aomegaw_x - iomega(delw_z)/(delz)`
`x` |
horizontal axis (m) |
`z` |
depth into the seabed (m) |
`t` |
time (s) |
`T` |
wave period (s) |
`L` |
wavelength (m) |
`lambda` |
Lame's elastic constant (kPa) |
`G` |
elastic shear modulus (kPa) |
`K` |
drained bulk modulus (kPa) |
`C` |
compressibility coefficient (kPa-1) |
`k` |
coefficient of permeability (m s-1) |
`gamma_w` |
specific weight of water (kNm-3) |
`w_x` |
total displacement in the horizontal direction (m) |
`w_z` |
total displacement in the vertical direction (m) |
`u_w` |
pore water pressure (kPa) |
`P_0` |
pressure wave amplitude (kPa) |
`a` |
wavenumber `((2pi)/L)` (1/m) |
`omega` |
angular velocity `((2pi)/T)` (1/s) |
`i` |
imaginary unit `(sqrt(-1))` |